Generalized Supersymetric Boundary State

نویسنده

  • Koji Hashimoto
چکیده

Following our previous paper (hep-th/9909027), we generalize a supersymmetric boundary state so that arbitrary configuration of the gauge field coupled to the boundary of the worldsheet is incorpolated. This generalized boundary state is BRST invariant and satisfies the non-linear boundary conditions with non-constant gauge field strength. This boundary state contains divergence which is identical with the loop divergence in a superstring σ model. Hence vanishing of the β function in the superstring σ model corresponds to a well-defined boundary state with no divergence. The coupling of a single closed superstring massless mode with multiple open string massless modes is encoded in the boundary state, and we confirm that derivative correction to the D-brane action in this sector vanishes up to the first non-trivial order O(α∂). Combining T-dualities, we incorpolate also general configurations of the scalar fields on the D-brane, and construct boundary states representing branes stuck to another D-brane, with use of BIon configuration. [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary ‎conditions‎

Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...

متن کامل

Buckling and Thermomechanical Vibration Analysis of a Cylindrical Sandwich Panel with an Elastic Core Using Generalized Differential Quadrature Method

In this paper, the vibrational and buckling analysis of a cylindrical sandwich panel with an elastic core under thermo-mechanical loadings is investigated. The modeled cylindrical sandwich panel as well as its equations of motions and boundary conditions is derived by Hamilton’s principle and the first-order shear deformation theory (FSDT). For the first time in the present study, various bound...

متن کامل

Corrections to D-brane Action and Generalized Boundary State

In this paper, we generalize a boundary state to the one incorporating nonconstant gauge field strength as an external background coupled to the boundary of a string worldsheet in bosonic string theory. This newly defined boundary state satisfies generalized nonlinear boundary conditions with non-constant gauge field strength, and is BRST invariant. The divergence immanent in this boundary stat...

متن کامل

Boundary Value Problems in Generalized Thermodiffusive Elastic Medium

In the present study, the boundary value problems in generalized thermodiffusive elastic medium has been investigated as a result of inclined load. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. As an application of t...

متن کامل

Second order linear differential equations with generalized trapezoidal intuitionistic Fuzzy boundary value

In this paper the solution of a second order linear differential equations with intuitionistic fuzzy boundary value is described. It is discussed for two different cases: coefficient is positive crisp number and coefficient is negative crisp number. Here fuzzy numbers are taken as generalized trapezoidal intutionistic fuzzy numbers (GTrIFNs). Further a numerical example is illustrated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999